16 research outputs found

    Control strategy of grid connected power converter based on virtual flux approach

    Get PDF
    A la portada consta el nom del programa interuniversitari: Joint Doctoral Programme in Electric Energy Systems [by the] Universidad de Málaga, Universidad de Sevilla, Universidad del País Vasco/Euskal Erriko Unibertsitatea i Universitat Politècnica de CatalunyaDistributed Generation (DG) provides an alternative to the Centralized Generation (CG) by means of generating electricity near to the end user of power with the employment of small-scale technologies to produce electricity, mainly using Renewable Energy Sources (RES). The prospects of renewable energy integration during the next years are still very optimistic. This PhD dissertation is made to provide an alternative control framework for the grid connected power converter by adopting the virtual flux concept in the control layer. This dissertation can be divided into three main topics. The 1st topic presents the voltage sensorless control system for the grid-connected power converter. The control system presented is done without depending on AC-voltage measurement where the grid synchronization is based on the Virtual Flux (VF) estimation. In this regard, the Frequency Locked Loop (FLL) is used in conjunction with the estimation scheme to make the system fully adaptive to the frequency changes. This voltage sensorless application is useful for reducing cost and complexity of the control hardware. It is also can be utilized in case of limited reliability or availability of voltage measurements at the intended point of synchronization to the grid. Considering that most previous studies are based on the VF estimation for the case of power converter connected to the grid through the L-filter or LC-filter, this dissertation is focused on the power converter connected to the grid through the LCL filter. The Proportional Resonant (PR) current controller is adopted in the inner loop control of the power electronics-based converter to test the performance of such system. Another control method based on VF synchronization that permits to control the active and reactive power delivery in a remote point of the grid is also presented in this dissertation. This is due to the fact that the VF is implemented that the voltage in a remote point of the line can be estimated. As it will be shown in simulations and experiments, the proposed control scheme provides a good tracking and dynamic performance under step changes in the reference power. The fast synchronization and the smooth reference tracking achieved in transient conditions have demonstrated the effectiveness of the Dual Second Order Generalized Integrator controlled as Quadrature Signal Generator (DSOGI-QSG) and also the current controller used in the proposed system. In addition to the power control itself, this study could also benefit the frequency and the voltage regulation methods in distributed generation applications as for instance in microgrid. Considering the fact that the grid connected power converter can be controlled as a virtual synchronous generator where the flux is a variable to be used for controlling its operation, this dissertation also presents a Virtual Synchronous Flux Controller (VSFC) as a new control framework of the grid connected power converter. In this regard, a new control strategy in the inner loop control of the power converter will be proposed. The main components of the outer loop control of VSFC are based on the active and reactive power control. The results presented show that the VSFC works well to control the active and reactive power without considering any synchronization system. The inner loop control is able to work as it is required, and the measurement flux is able to track the reference flux without any significant delays. All the work presented in this dissertation are supported by mathematical and simulation analysis. In order to endorse the conclusions achieved, a complete experimental validations have been conducted before wrapping this dissertation with a conclusion and recommendation for future enhancement of the control strategies that have been presented.Postprint (published version

    Remote power control strategy based on virtual flux approach for the grid tied power converters

    Get PDF
    The control of active and reactive power for the Renewable Energy Sources (RES) based power plants are very important. The injection of active and reactive power to the grid is normally controlled at the Point of Common Connection (PCC) where this point is typically far away from the power converter station. This paper proposed a controlling principle which is based on virtual flux approach that permits to control remotely the power injected at the PCC. The results will show that the Virtual Flux (VF) estimation is capable to estimate the grid voltage in any point of the network as well as the capability of the control principle to inject the specific amount of active and reactive power at a point that can be some kilometers away. In this paper, the basic principle for the remote power control is presented and the effectiveness of the proposed system has been validated by experimental studies.Postprint (published version

    A comparative study of methods for estimating virtual flux at the point of common coupling in grid connected voltage source converters with LCL filter

    Get PDF
    Grid connected Voltage Source Converters (VSCs) with LCL filters usually have voltage measurements at the filter capacitors, while it can be important to control the active or reactive power injection at the grid-side of the LCL filter, for instance at a Point of Common Coupling (PCC). Synchronization to the PCC voltage can be obtained by Virtual Flux (VF) estimation, which can also allow for voltage sensor-less operation of VSCs. This paper is presenting a comparative evaluation of methods for estimating the VF at the PCC, considering a VSC connected to the grid through an LCL filter with a Proportional Resonant (PR) controller as the inner current control loop. The VF estimation is achieved by using frequency adaptive dual SOGI-QSGs (DSOGI-VF). The Frequency Locked Loop (FLL) is used in order to keep the positive and negative sequence (PNS) VF estimation inherently frequency adaptive. Three different methods are considered for obtaining the capacitor current needed for estimating the VF at the grid side of the LCL filter which are based on fully estimation by using the voltage sensor-less method, by estimating the capacitor current from the measured voltage or by using additional capacitor current sensors. The results have been compared and validated by simulation studies.Peer ReviewedPostprint (author's final draft

    Remote power control injection of grid-connected power converters based on virtual flux

    Get PDF
    Renewable Energy Source (RES)-based power plants need to control the active and reactive power at the Point of Common Connection (PCC) with the grid, in order to comply with the requirements of the Transmission System Operators (TSOs). This point is normally far away from the power converter station, and the cables and step-up transformers have a non-neglectable influence on the delivered power. In order to overcome this drawback, this paper presents a control algorithm that permits one to control remotely the power injected at the PCC, by adjusting the local controller of the Voltage Source Converters (VSCs). In this work, the synchronization with the grid is done based on the Virtual Flux (VF) concept. The results reveals that the VF estimation is able to produce a reliable estimation of the grid voltage in any point of the network, and makes it possible to calculate the necessary current reference for injecting a desired active and reactive power at a point that can be some kilometres away. In this paper the main principle for this remote power control is presented. Likewise, the simulation and experimental results will be shown in order to analyse the effectiveness of the proposed systemPeer ReviewedPostprint (published version

    A comparative study of methods for estimating virtual flux at the point of common coupling in grid connected voltage source converters with LCL filter

    Get PDF
    Grid synchronization based on Virtual Flux (VF) estimation allows for control of grid-connected power converter without depending on AC-voltage measurements. This is useful in voltage-sensor-less applications for reducing cost and complexity of the control hardware, and can be utilized in case of limited reliability or availability of voltage measurements at the intended point of synchronization to the grid. However, for Voltage Source Converters (VSC) with LCL filters, the influence of the capacitor current must be taken into account to ensure accurate VF estimation at the Point of Common Coupling (PCC) with the grid. This paper presents a comparative evaluation of three VF-based methods for grid synchronization of VSCs with LCL filters, with three different ways of obtaining the capacitor current. The VF estimation in the first method is based only on the measured converter currents. The second method includes capacitor voltage measurements used for estimating the capacitor currents, while the capacitor currents are measured in the third approach. Comparative results from time-domain simulations are presented demonstrating good performance of the estimation and accurate control of the active and reactive power at the PCC with all three methods, as long as sufficiently accurate filter parameters and current measurements are available. However, the approach based on capacitor current measurements is sensitive to noise due to the high ripple current compared to the fundamental frequency current in the capacitors. The operation of a converter with VF-based grid synchronization including estimation of the capacitor current is demonstrated by experimental results, verifying the voltage sensor-less operation with LCL-filter.Peer ReviewedPostprint (author's final draft

    Remote Power Control Injection of Grid-Connected Power Converters Based on Virtual Flux

    No full text
    Renewable Energy Source (RES)-based power plants need to control the active and reactive power at the Point of Common Connection (PCC) with the grid, in order to comply with the requirements of the Transmission System Operators (TSOs). This point is normally far away from the power converter station, and the cables and step-up transformers have a non-neglectable influence on the delivered power. In order to overcome this drawback, this paper presents a control algorithm that permits one to control remotely the power injected at the PCC, by adjusting the local controller of the Voltage Source Converters (VSCs). In this work, the synchronization with the grid is done based on the Virtual Flux (VF) concept. The results reveals that the VF estimation is able to produce a reliable estimation of the grid voltage in any point of the network, and makes it possible to calculate the necessary current reference for injecting a desired active and reactive power at a point that can be some kilometres away. In this paper the main principle for this remote power control is presented. Likewise, the simulation and experimental results will be shown in order to analyse the effectiveness of the proposed system

    A comparative study of methods for estimating virtual flux at the point of common coupling in grid connected voltage source converters with LCL filter

    No full text
    Grid synchronization based on Virtual Flux (VF) estimation allows for control of grid-connected power converter without depending on AC-voltage measurements. This is useful in voltage-sensor-less applications for reducing cost and complexity of the control hardware, and can be utilized in case of limited reliability or availability of voltage measurements at the intended point of synchronization to the grid. However, for Voltage Source Converters (VSC) with LCL filters, the influence of the capacitor current must be taken into account to ensure accurate VF estimation at the Point of Common Coupling (PCC) with the grid. This paper presents a comparative evaluation of three VF-based methods for grid synchronization of VSCs with LCL filters, with three different ways of obtaining the capacitor current. The VF estimation in the first method is based only on the measured converter currents. The second method includes capacitor voltage measurements used for estimating the capacitor currents, while the capacitor currents are measured in the third approach. Comparative results from time-domain simulations are presented demonstrating good performance of the estimation and accurate control of the active and reactive power at the PCC with all three methods, as long as sufficiently accurate filter parameters and current measurements are available. However, the approach based on capacitor current measurements is sensitive to noise due to the high ripple current compared to the fundamental frequency current in the capacitors. The operation of a converter with VF-based grid synchronization including estimation of the capacitor current is demonstrated by experimental results, verifying the voltage sensor-less operation with LCL-filter.Peer Reviewe

    A simulation study of proportional resonant controller based on the implementation of frequency-adaptive virtual flux estimation with the LCL filter

    No full text
    This paper discusses the implementation of proportional resonant (PR) current controllers for a Voltage Source Converter (VSC) with LCL filter which is synchronized to the grid by virtual flux (VF) estimation with inherent sequence separation. Even though there is an extensive amount of literature and studies on the PR current controller for tracking the current reference of a VSC in the stationary reference frame, there is no discussion taking into account voltage sensor-less operation based on virtual flux estimation with an LCL-filter. Separate estimation of the positive and negative sequence virtual flux components at the grid-side of the LCL-filter, as well as current sequence separation, using the Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL) is presented as part of a proposed method. The LCL filter is characterized in order to reduce the parameter deviation that might affect the virtual flux estimation. The stability of the proposed method is analyzed in the frequency domain while the operation and performance of the proposed system is verified by simulation studies.Peer ReviewedPostprint (author's final draft

    Mitigation of Harmonics Using Novel Sector-Based Switching Pattern Space Vector Pulse Width Modulation

    No full text
    Pulse Width Modulation (PWM) driven power converters are widely used in realizing the function of rectification and inversion in renewable and emerging power applications. They play a key role in tying renewable energy sources of solar and wind to conventional energy grid systems. Such emergying styles of power systems are referred to as Distributed Generation (DG) or energy mix. The PWM-based switching devices are also sources for injecting harmonics to degrade the quality level in this emerging style of DG systems causing steady-state waveform distortion. Thus power converters operated by finely tuned PWM play an important role in mitigating the voltage waveform distorting harmonics and consequently improving the stability of the system. This paper presents the mitigation of harmonic contents by reproducing as a novel space vector-based switching pattern of SVPWM. In this work, the proposed switching pattern will have a DC link RMS current equal to or less than that of a conventional SVPWM current under the same switching frequency (SF), load, L-C filter, DC bus voltage, and Modulation Index (MI). The results include a 13.43% improvement in Total Harmonic Distortion (THD) at relatively high modulation indices. The Weighted Total Harmonic Distortion (WTHD) has also improved by 47.37% and the number of thyristors has been reduced lowering switching losses. The Matlab-Simulink simulation results have been experimentally verified with an Advanced Digital Analog Learning Module (ADALM M2k)-based experimental setup, improving the proposed SVPWM THD by 13.49%. The conventional and proposed SVPWM performance comparison is done by obtaining Fast Fourier Transform (FFT) by driving a two-level three-phase voltage source inverter
    corecore